磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

磨铁读书推荐阅读:大唐:权谋凭着不是反派活着三路异世之帝王路系统再拉也得用着隋末穿越明朝,从最穷国舅开始种田历史种田:我家公子超凶猛世子贤婿,快请上位!异世权谋:重生智者三国:苟在曹营的二郎神棍超凡三国之开局天下第一从小乞丐杀到一统天下大明好舅子:拯救皇帝崇祯嫡妻难惹九龙夺嫡:废材成皇穿越水浒之大王要低调三国:开局杀穿曹营,看呆刘皇叔开局十万两米壮汉,我含泪登基大唐:天上掉下个铜板都得姓李三国:腐烂行尸,走肉国度!我,大明长生者,历经十六帝穿越之农家小憨娃大志向我刷短视频通古代,老祖宗全麻了大唐天下穿越高衙内后,林冲刚被害陛下快跑吧,三皇子进京了带着沙雕系统在古代开启工业革命我毒士圣体,女帝劝我冷静重生:金戈铁马,气吞万里如虎大清之祸害补天前传三国:从对大耳贼挥舞锄头开始穿越市井之妃要当家大秦:我杀敌就能变强大明:开局断绝朱允炆帝王路夺舍崇祯:成就华夏帝国抗战从挖走张大彪开局开局结交孙坚,截胡传国玉玺大明:官居天子废除昏君踪影:马踏诸国铸无上凶名圣人齐出,华夏人杰进修班开课了魏臣大炎帝国,吾济苍生大乾暴君万界之我是演员大人,得加钱大秦之召唤群雄三国:从佃农开始横推天下!回到三国初年搅动天下
磨铁读书搜藏榜:相府毒千金三国第一奸贼鬼明开局怒喷扶苏,这个皇帝我来当!特种兵之神级技能男配个个是戏精庶女攻略我在大唐行医的那些年陛下,臣只想吃软饭史上最强太子!大庆风云录大明中兴全凭杀杀杀抢抢抢我真不想当圣人啊!关于我穿越大明当皇帝这件事不好!魏征又带他儿子上朝了!靑海传词条返还,一统天下从收徒朱元璋开始金牌帝婿三国:最强争霸系统妃皇腾达,傲世毒妃不好惹饥荒开局:惨死的都是有粮的我给崇祯当老师绝色红颜,高门贵妻我的帝国弗利兰出生后就被内定为皇后重生之再造华夏再生缘:我的温柔暴君(全本+出版)高武三国:从被华雄秒杀开始卫青传奇人生大唐太子李承乾,李世民求我登基三国崛起并州与秦始皇做哥们儿南宋弃子请叫我威廉三世三国之极品纨绔三国之从益州争霸开始大明:模拟曝光,朱元璋让我造反夺舍崇祯:成就华夏帝国穿越成无敌的明朝皇帝红楼:曹操转生,开局杀贾珍错进洞房:娘子快到碗里来全日谈说唐演义画河山诸葛亮魂穿崇祯【完结】特工穿越:宠爱粉嫩美男金融帝国之宋归女帝的内阁首辅绛色大宋重生水浒之纵横天下江山名士
磨铁读书最新小说:我一个庶子,权倾天下很合理吧?穿越三国之黄巾天下重生清末之傲视列强!如何拯救德意志三国:布衣赵武征途记立渊传沉默的战神穿越之铁血捕快水浒:我武大郎,反了!大唐镇国公系统!我有召唤军火异能我都皇叔了,叫刘备声大哥怎么了三国之现代魂起飞,从1973年开始晋世传奇之雄霸天下鹰扬拜占庭又名重生之马其顿王朝大明英宗朱祁镇穿越后我还是戴黄盔穿黄袍时空乱叙汉吏红楼:最强锦衣卫,我只手遮天!极品五世子脱了官衣,你跟我一个山贼讲道理?我孔圣唯一子孙,你问我懂论语吗重生美好三国:人屠现世,请诸位赴死无双镇北王废柴趣妻红楼:王爷又双叒叕娶妻了开局一书生:从敬夜司狱开始我掌梁山,没宋江什么事了朱雄英现代留学十年,回归大明穿越贾琏之慢节奏生活手握百万铁骑,你说朕是反贼?开局救下刘邦,竟成为历史权臣?明末华商之南海边地公司什么?我一个科研人员成皇子了?穿越亮剑之抗日签到系统三国,我曹贼,爱江山更爱美人!明末之我若为王全族被贬,北荒粮满仓昏君啃树皮学名张好古明朝小匠:穿越江湖的逆袭之路大秦:天幕直播我争夺天下大明:治好病后,老朱求我去现代如何帮助女主在异世界建立势力?重生汉末,开局收刘宏为徒红颜劫:乱世情殇逍遥悍匪:开局一箱手榴弹家父吕奉先