磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

说实话,开创“机器学习”新领域,成为“深度学习”等技术路线的指路人,的确十分诱人,光是提出“人工神经网络”的概念,就足以名垂青史了。

但对于自己现在的水平,江寒心里还是很有数的,不谦虚地说,只能算略知一二。

前世虽然上过大学,学的却不是计算机专业,在编程和硬件领域,基本上全靠自己摸索,知识体系并不完善。

至于“人工神经网络”方面,前后只看了几本入门教材,外加在P站看了十几个系列视频教程。

一些重要的概念是清楚的,一些经典算法也是了解的,做一些简单的推演,应该也没什么大问题。

可许多公式背后的原理,当时就没能理解得十分深刻,到了现在,印象就更加模糊了。至于那些需要最先进的数学工具,才能完成的证明与推导……

在机器学习领域,“深度学习”被称作最具颠覆性的理论,以他目前掌握的这点儿皮毛,想要从无到有地开辟出一整条技术路线,难度可想而知。

可难就不搞了吗?

这是个难得的机遇,一定要好好把握才行。只是他还需要好好想一想,如何妥善运用那些“走私”来的知识。

既要充分发掘价值,也要注意合理性。起码拿出来的东西,要符合自己的人设,要找得到合理的解释,免得惹出什么不必要的麻烦……

江寒前思后想,终于做出了决定。

总之,必须尽快将“感知机”的概念抛出去,否则后续的一系列技术,全都得憋在脑袋里,没法拿出来见人。

只是这样一来,估计自己将来基本跑不掉一个“机器学习宗师”、“AI教父”、“人工神经网络创始人”之类的称号了……

别看“感知机”简单,却是“人工神经网络”的基石,很多“机器学习”算法,比如支持向量机(SVM)、深度学习、D-QLearning、生成对抗网络(GAN)……都是在其基础上才发展出来的。

在另一个世界,“感知机”的概念诞生于1957年,由Cornell航空实验室的FrankRosenblatt提出。

本质上是一个线性分类模型,用于解决二元线性分类问题,对应于输入空间中将实例划分为两类的分离超平面,是最简单的前馈人工神经网络。

好吧,说人话。

简单点说,感知机就是一个算法,通过大量训练,可以让电脑掌握某种规则,然后按照这种规则,将输入的数据分成两类。

如果输入的数据空间只有两个维度,将其视作平面直角坐标系,那么“感知机”的图像,其实就是一根直线。

“感知机”虽然简单,还是有点用的。

比如经过训练后,输入身份证号,就能帮你判断出是男是女;比如输入身高和体重,就能判断是否超重……

可能有人会问:随便写个程序,不是很简单就能实现这些功能吗?

但感知机的神奇之处,在于使用同样结构的程序,就能在很多领域里通用,而不用针对性编程。

这是机器学习和常规编程的本质区别。

感知机结构异常简单,工作原理也不复杂,但要想写成论文,也需要进行一些数学推导,以及前置理论。

“感知机”是建立在M-P模型的基础上的。

生物的神经细胞结构,主要由树突、突触、细胞体及轴突组成。单个神经细胞有两种状态:激活或者未激活。

神经细胞是否激活,取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。

当信号量总和超过了某个阈值时,神经元就会激活,产生电脉冲,电脉冲会沿着轴突并通过突触传递到其它神经元……

M-P模型就是模拟生物神经元的工作机制,创建出来的一种数学模型,采用阈值加权和与激活函数来控制信息传导过程,是生物神经元的一种简单抽象。

如果M-p模型的相关论文尚未发表,江寒就需要自己推导,并将其容纳进自己的论文里,否则难以自圆其说。

在写论文前,必须扫清障碍,接下来江寒就开始在网上寻找论文和线索。

功夫不负有心人,江寒几经周折,终于在一个学术网站,找到了那篇讲述M-P模型的论文:《Alogicalcalculusoftheideasimmanentinnervousactivity》。

这篇论文发表也有几十年了,却没在这个世界引起多少关注,引用数更是少得可怜,不过也幸好如此,否则哪轮得到自己来引领时代风骚?

江寒重生前就看过这篇论文,但那时候并没怎么细心揣摩,只是一扫而过,现在为了写出合格的SCI论文,自然要好好琢磨了。

他找来一个只写了两、三页的日记本,边刷论文边记录要点和心得,论文里遇到的术语,如果不十分理解,还要上网寻找文献和参考资料,还要确定来源是否可靠……

时间过得很快,转眼一个小时过去。

虽然说高三寝室并不会熄灯,但室友们总要睡觉的,老李那边也不能拖延太久。江寒看看重要问题基本解决得差不多了,就将手机上交,然后匆匆洗漱、上床休息。

第二天。

江寒醒得有点早,看看时间,还差几分钟才5点,就决定去操场上跑跑步。

上辈子疏于锻炼,身体素质始终没提上来,没到30岁就处于亚健康状态了,这一世他不想重蹈覆辙。

很快洗了把脸,然后来到操场。

到了地方才发现,刚刚5点就已经有不少人来锻炼了,跑步的,压腿的,打球的,玩单双杠的……

“像我这么勤奋的人,还真不少啊!”江寒感慨了一句,活动下关节,压了几下腿,然后开始慢跑。

运动时脑子也闲不下来,学习的事情、赚钱的事情、系统的事情,“神经网络”、“感知机”、“M-P模型”……各种念头纷至沓来。

千头万绪,此起彼伏。

江寒正心不在焉跑着,忽然发现前面不远处,有个女生也在慢跑,背影很惹眼,好像有点眼熟。

不一会儿,经过那个女生身边时,他才确认自己并没有认错,果然是夏雨菲。

有个大活人在身边跑步,夏雨菲自然不可能发现不了,但并没有做出什么反应,看都不看他一眼。

“早啊!”江寒笑容爽朗。

“早。”夏雨菲淡淡回了一句,眼光都没偏一下,自顾自跑着。

江寒只是出于礼貌,才打了个招呼,没想到她会回应。

声音还挺脆,就是神情十分冷淡,有点拒人于千里之外的意思……

大概这姑娘经常被搭讪,内心已经毫无波动,说不定还很不耐烦?

江寒笑了笑,不再理会,很快超了过去。

既然人家对他没兴趣,他就不会多打扰。

重活一世,他不会舔任何人,哪怕是夏雨菲。

磨铁读书推荐阅读:我在农村说媒,拯救天下光棍都市之至尊战神全民觉醒:我隐藏了空间系谜案追凶地摊捡漏,开局万倍利润四合院:傻柱子的幸福生活陆云我的七个姐姐风华绝代免费阅读 小说娱乐:进狱顶流,我绝不踩缝纫机猛男下山,整个世界瑟瑟发抖游龙十三针开局黑丝空姐,我竟是顶级二代高武签到赛亚人,一路爽翻爆星辰小巷人家:守护庄家?开局成孤儿阿姨别哭,我帮人帮到底好了穿成小寡妇后我乘风破浪网游:我能无限铸造神装重生渔村:从截胡村花阿香开始爱始终都像那片海重生之完美投资神豪狱医凶猛邪帝毒宠:爆萌兽妃反派的白月光替身我不当了异常生物猫耳娘战神:我真的只是个弟弟高冷男神住隔壁:错吻55次娱乐:你们不带我玩,那我就掀桌子了港片:我是大哥大都市机甲异能者娇妻的修真逆缘灵气复苏之我能进化一切网游之野望第一位传奇驯兽师上医至明麻二娘的锦绣田园诸天金手指之打造快乐人生龙婿陆凡免费阅读高考落榜,狂撸百亿网贷杀向股市赵宁岳飞铠甲勇士大巨作全铠甲回归枭雄:被女友陷害后,出狱成大哥我有一座道具库凡星异化龙神太子地府年度最佳员工这可不是洛圣都四合院:大茂将我从桥底背回后概念神:我十级,他夭寿的十转了吸血姬饲养守则M级异能:观测者开局天降系统,我摸手就能治万病
磨铁读书搜藏榜:我有一个异世界天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿大国重器:机师成神之路!开局我怒休渣男逃离异都王牌相公:霸道妻主爱上我身为仙帝的我开局穿越了万亿透视豪医鸡飞狗跳的农门生活重生之着魔.操盘手札记无限影视,从流金开始岁月如此多娇相思西游之大圣追爱记觉醒钞能力都市医仙魂穿大汉之未央宫赋都市游侠之青铜短剑农女:星际战将在古代开顺风快递残疾大佬不孕不育?她一胎生四宝!带着萌宝去结婚于枫于山高雨霜噩梦复苏,我有一只小僵尸三国召唤之袁氏帝途民政局门口签到,奖励美女老婆想躺平,却被娱乐圈女人们套路了特级厨师四合院:这个司机太过嚣张赘婿无双官道红颜四合院:从下乡归来后开始离婚后我成了薄爷的白月光闪婚甜蜜蜜:总裁老公宠爆了黑心娇妻,太放肆!我是真有宝藏农家努力生活乡村野汉:与表姐一起钻进山林白手起家杀嫡重生,反派演员被爆捐款无数一窝三宝,总裁喜当爹沧桑之情天才高手的妖孽人生从1977开始快穿之跪求愿望成真绝世容颜美女总裁董事长是我老婆四合院:八极传人过目不忘玄门大佬她直播后,全国沸腾了田园弃妇
磨铁读书最新小说:财神佑富马俊传奇中篇小说集世间百态队友屯积分,我屯队友反派:穿越过去不降智重生1960,从神农架打猎开始名臣后裔刚出大学,富婆小姐姐要包养我隐世龙皇冠禁止维度系统助力:林风的逆袭之旅重生缅北之我有大佬靠山躺平,从蓝星找媳妇生娃开始被嫌弃太穷,我靠黄金瞳成为富翁贫民少年的逆天改命竹匠生存边缘之异界入侵铁柱,下山快活去吧!神临之后权力巅峰:反贪第一人民国地主沉浮存款永远一千,包养我你分期付款全民领主:我能无限鉴定词条!奇门医圣开局校花妈妈给我当秘书师傅和貌美如花徒弟们美母骑士:超神学院时空蔷薇篇我以青铜成就王者都市异能:失落与重拾的力量回穿,卖掉宝藏富可敌国吃上萝莉软饭的科学家只想摆烂第四天灾:鬼子的噩梦来了上门女婿我不当了,你闹啥娱乐:我一个雇佣兵你让我当演员七零之八个扶弟魔的弟弟重生了开局德械师,从伪军到独裁元首偷听心声:前妻她口是心非未来的我?是天降的白给美少女!如此当官带着民众奔小康校园异能联盟人在都市,系统在末世!用成仙骗我送外卖?逆位迷宫拿着易经去穿越都市僵尸王之万界风卷行戈真千金一睁眼,满级马甲爆虐人渣让你当黑手套,你给人去城市化求生:我的兵种叠加所有升级路线我在华夏镇诸天佛之眼