磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

智慧闪耀:群里的学霸时刻

在总统府那宽敞明亮的书房里,午后的阳光透过雕花的玻璃窗,洒在木质地板上,形成一片片斑驳的光影。林云坐在书桌前,结束了一上午忙碌的工作,他伸了个懒腰,决定在短暂的休息时间里,看看自己的粉丝群。

林云的手指在手机屏幕上轻轻滑动,点开了那个热闹非凡的粉丝群。群里消息如潮水般不断滚动,大家热烈地讨论着各种话题,从林云在国际外交舞台上的精彩表现,到他在法庭上做出的公正裁决,粉丝们对他的崇拜和喜爱溢于言表。而林云在群里的网名“云宝”,也被大家熟知,尽管身份特殊,但他很享受在这个虚拟世界里,与粉丝们轻松交流的时光。

就在林云饶有兴致地看着群里的聊天记录时,一条消息吸引了他的注意。一位名叫苏然的大学生发了一道数学题,并配上文字:“家人们,这道题我想了好久都没思路,咱们群里有学霸能帮忙解一下吗?这可是我们高等数学课程里超级难的一道题。”

林云定睛一看,题目是这样的:

已知函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0。证明:存在\\xi\\in(a,b),使得f(\\xi) + \\xi f'(\\xi)=0。

这道题对于很多人来说确实颇具难度,一时间,群里安静了下来,之前热闹的讨论氛围被这道难题带来的沉默所取代。就连群主也发了个无奈的表情,表示自己也被难住了。

林云看着题目,嘴角微微上扬,露出自信的笑容。他虽然主要精力放在外交和法律领域,但学生时代扎实的数理基础此刻派上了用场。他起身走到书桌旁,拿起一支笔和一张白纸,准备开始解题。

首先,林云在纸上写下分析思路:“这道题考查的是中值定理的应用,关键在于构造一个合适的辅助函数。”他一边思考,一边在纸上写下辅助函数的构造过程。

设F(x)=x f(x),林云开始在纸上详细地推导这个辅助函数的性质。

因为f(x)在区间[a,b]上连续,在(a,b)内可导,而x在实数域内是连续且可导的,根据两个连续且可导函数的乘积仍然连续且可导,所以F(x)在区间[a,b]上连续,在(a,b)内可导。

接着,计算F(a)和F(b)的值。

F(a)=a\\times f(a)=a\\times0 = 0,F(b)=b\\times f(b)=b\\times0 = 0,所以F(a)=F(b)。

此时,林云想起了罗尔中值定理:如果函数y = F(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点处的函数值相等,即F(a)=F(b),那么在(a,b)内至少存在一点\\xi,使得F'(\\xi)=0。

因为F(x)=x f(x),根据乘积求导法则(uv)^\\prime = u^\\prime v + uv^\\prime,对F(x)求导可得:

F^\\prime(x)=(x f(x))^\\prime = f(x) + x f^\\prime(x)。

由罗尔中值定理可知,存在\\xi\\in(a,b),使得F^\\prime(\\xi)=0,即f(\\xi) + \\xi f^\\prime(\\xi)=0。

林云完成了整个解题过程,他仔细检查了一遍,确保没有任何疏漏。随后,他拿起手机,对着写满解题过程的纸张拍了一张清晰的照片,上传到粉丝群里。

几乎是瞬间,群里炸开了锅。

“这是什么神仙解题思路!”

“哇,云宝大神太牛了吧,这么难的题都能解出来!”

“这也太厉害了,我看了答案都还得消化半天。”

苏然更是激动得连发了好几个震惊的表情:“大神,你这思路太清晰了,我之前完全没想到构造这样的辅助函数,这下彻底明白了,太感谢你了!”

林云看着群里的消息,笑着回复道:“其实只要掌握了相关的定理和方法,这类题也没有那么难啦。数学就是要多思考,多尝试不同的思路。”

有粉丝好奇地问道:“云宝,你是学数学专业的吗?这解题能力也太强了。”

林云想了想,回复道:“我不是学数学专业的哦,只是以前对数学很感兴趣,学了不少知识,没想到现在还能派上用场。”

这时,群主也冒了出来:“云宝,你这一下子就把我这个群主比下去了,看来以后群里有数学难题,都得指望你啦。”

林云连忙回复:“群主过奖啦,大家一起交流学习嘛,我也是瞎猫碰上死耗子,刚好会这道题。”

粉丝们可不信林云的谦虚之词,纷纷开始询问他解题的技巧和学习数学的方法。林云耐心地一一解答,他分享了自己在学生时代学习数学的经验:“学习数学最重要的是理解概念和定理,不要死记硬背,要多做练习题,通过练习来加深对知识的理解和掌握。遇到难题的时候,不要急于看答案,要自己多思考,尝试从不同的角度去解决问题。”

林云的分享让粉丝们受益匪浅,大家开始在群里讨论起自己学习数学的心得和困惑,群里的氛围变得异常热烈。林云也沉浸在这种浓厚的学习交流氛围中,他一边回答着粉丝们的问题,一边回忆着自己学生时代为了攻克一道道数学难题而废寝忘食的日子。

过了一会儿,又有粉丝发了一道新的数学题,这是一道关于多元函数极值的问题:

已知函数z = f(x,y)=x^3 + y^3 - 3xy,求函数z在闭区域d:x\\geq0,y\\geq0,x + y\\leq2上的最大值和最小值。

林云看着这道题,再次拿起笔,在纸上开始分析。

首先,求函数z在区域d内的驻点。

分别对x和y求偏导数:

z_x = 3x^2 - 3y,z_y = 3y^2 - 3x。

令z_x = 0,z_y = 0,得到方程组:

\\begin{cases}3x^2 - 3y = 0 \\\\ 3y^2 - 3x = 0 \\end{cases}

由3x^2 - 3y = 0可得y = x^2,将其代入3y^2 - 3x = 0中,得到:

3(x^2)^2 - 3x = 0,即3x^4 - 3x = 0,提取公因式3x得3x(x^3 - 1)=0。

解得x = 0或x = 1。

当x = 0时,y = 0;当x = 1时,y = 1。所以函数z在区域d内有两个驻点(0,0)和(1,1)。

接着,求函数z在区域d边界上的最值。

边界x = 0(0\\leq y\\leq2)上,z = f(0,y)=y^3,z^\\prime = 3y^2\\geq0,所以z在[0,2]上单调递增,z(0)=0,z(2)=8。

边界y = 0(0\\leq x\\leq2)上,z = f(x,0)=x^3,z^\\prime = 3x^2\\geq0,所以z在[0,2]上单调递增,z(0)=0,z(2)=8。

边界x + y = 2(x\\geq0,y\\geq0)上,y = 2 - x,将其代入z = f(x,y)中得:

z = f(x,2 - x)=x^3 + (2 - x)^3 - 3x(2 - x)

展开并化简:

\\begin{align*}

z&=x^3 + (8 - 12x + 6x^2 - x^3) - (6x - 3x^2)\\\\

&=x^3 + 8 - 12x + 6x^2 - x^3 - 6x + 3x^2\\\\

&=9x^2 - 18x + 8

\\end{align*}

对z = 9x^2 - 18x + 8求导得z^\\prime = 18x - 18,令z^\\prime = 0,解得x = 1,此时y = 1,z(1)=9 - 18 + 8 = -1。

最后,比较驻点和边界上的函数值:

f(0,0)=0,f(1,1)=1 + 1 - 3 = -1,f(2,0)=8,f(0,2)=8。

所以函数z在闭区域d上的最大值为8,最小值为-1。

林云完成了解题过程,再次拍照上传到群里。粉丝们看到答案后,又是一阵惊叹和夸赞。

“云宝,你简直就是数学大神啊,这解题过程太详细了!”

“跟着云宝学数学,感觉数学都变得简单了。”

“云宝,你是不是偷偷去数学系进修了,这水平绝了!”

林云看着群里的消息,笑着回复道:“大家别夸啦,我就是把自己的思路分享给大家,一起进步嘛。数学其实很有趣,只要掌握了方法,就能发现其中的乐趣。”

在接下来的时间里,林云继续和粉丝们在群里交流着数学知识和学习经验。他的耐心解答和专业分析,让粉丝们对他的崇拜又加深了几分。而林云也在这个过程中,收获了满满的快乐和成就感。他没想到,自己曾经热爱的数学,在这个粉丝群里,能成为连接他和粉丝们的桥梁,让彼此在知识的海洋里共同探索,共同成长。

磨铁读书推荐阅读:地摊捡漏,开局万倍利润护花神医陆云我的七个姐姐风华绝代免费阅读 小说娱乐:进狱顶流,我绝不踩缝纫机穿成小寡妇后我乘风破浪我的26岁总裁妻子官运:从遇到美女书记开始重生之完美投资神豪反派的白月光替身我不当了娱乐:你们不带我玩,那我就掀桌子了第一位传奇驯兽师麻二娘的锦绣田园龙婿陆凡免费阅读凡星异化龙神太子一路上有你(出版)开局天降系统,我摸手就能治万病我只是想做个好人啊人在潘家园,开局忽悠老胡去盗墓都重生了,谁还不是个富二代?开局灌输六大神功,见谁都一招秒一介废人如何逆袭成神!我在高武当学神记忆审判:那一刻,全国为他痛哭贫道,来自浮云寺逆袭者之水晶皮王我们在日落后恋爱超级系统,征服女神就变强舔狗反派只想苟,女主不按套路走!天使之吻鸭百香鸭舌万古神皇让你开直播,你坐瓜田里抓罪犯?化身为猫的自由之诗重生之玩转1975被大小姐捡回家背叛后的重生之逆袭都市:傻子神医懒股王红警:我称霸缅北,成为军阀!和女神在荒岛开天辟地我给佛祖当说客乡村赤脚小神医红尘护道人全民转职:御龙师,国家送我神龙开局世界公敌,我潜伏在官方内部御兽:我家御兽师整天就知道打架牙口不好,吃老婆软饭不过分吧?让你法律援助,你送法官牢里背书盛宠名门:医妃太惹火我才刚睡醒,怎么成人形天灾了?四合院,许大茂儿女双全
磨铁读书搜藏榜:我有一个异世界天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿大国重器:机师成神之路!开局我怒休渣男逃离异都王牌相公:霸道妻主爱上我身为仙帝的我开局穿越了万亿透视豪医鸡飞狗跳的农门生活重生之着魔.操盘手札记无限影视,从流金开始岁月如此多娇相思西游之大圣追爱记觉醒钞能力都市医仙魂穿大汉之未央宫赋都市游侠之青铜短剑农女:星际战将在古代开顺风快递残疾大佬不孕不育?她一胎生四宝!带着萌宝去结婚于枫于山高雨霜噩梦复苏,我有一只小僵尸三国召唤之袁氏帝途民政局门口签到,奖励美女老婆想躺平,却被娱乐圈女人们套路了特级厨师四合院:这个司机太过嚣张赘婿无双官道红颜四合院:从下乡归来后开始离婚后我成了薄爷的白月光闪婚甜蜜蜜:总裁老公宠爆了黑心娇妻,太放肆!我是真有宝藏农家努力生活乡村野汉:与表姐一起钻进山林白手起家杀嫡重生,反派演员被爆捐款无数一窝三宝,总裁喜当爹沧桑之情天才高手的妖孽人生从1977开始快穿之跪求愿望成真绝世容颜美女总裁董事长是我老婆四合院:八极传人过目不忘玄门大佬她直播后,全国沸腾了田园弃妇
磨铁读书最新小说:中国龙组之兵王无双重生之官途风云她们都说爱我,白月光回来红温了满级猎户:养妻活儿兼狩猎天下我只是学习不好,但我不是坏孩子完蛋后面的日子都是修罗场749局:破晓之光健身房里的临时爱情混民国,不借就抢搞校园霸凌?真当我没靠山啊?1962:饥荒年,我可以每天穿回现代糟糕,重生回来的她太会了辽西胡子金三角1951穿越60年代,不留遗憾战神叶尘996打工人重生成财阀求佛记命理寻踪轩帝人生之主下山后成了高冷校花的贴身高手系统来了,看我的深空废土1949璃院繁星穿到红尘逮天神都市高武战武九天阿曼的职场逆袭穷奇在我身被全家当废物后,我神医的身份曝光了别人淘金按克,你淘金按吨?异常配送:北斗与南斗的千年账单都快退圈了,爆词条系统才加载完来到城市仙尊归来,再不上学就迟到了!我能将人变成恶魔!回归豪门后,和前任姑姑闪婚了云启未来异世终焉高武:从班级吊车尾到人族武圣!都市逆袭之我是隐形首富捡个女友回家过年!灵幻觉醒之重生我,嘴强王者,三寸肉舌喷杀神明全民:霉运缠身?全世界助我升级都市生活之振兴中医红颜洪福神只:我是大角鼠?!大佬家的小废材逆袭了古董商寻船日志妻叛:我跌入谷底再攀巅峰