磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

马库斯听到林枫提到“改进网络结构”时,愣了一下。

这话听起来似乎有些轻描淡写,在2014年,深度学习的结构问题是个热门话题,而大家都还在围绕如何改进已有的架构,比如cNN(卷积神经网络)和RNN(循环神经网络)展开讨论。

大家都在想着要改进网络结构。

可要说“改进网络结构”,得具体到什么程度才能真正解决梯度消失问题呢?

他迟疑了一会儿,问道:“改进网络结构?你是说尝试新的层设计,还是在激活函数上进一步优化?”

林枫微微一笑,显得胸有成竹。

毕竟林枫关于人工智能的知识量截止到2024,而现在才刚刚2014。

在2024年,解决梯度消失的核心技术已经有了突破性的进展,比如“残差网络”(ResNet)的提出,在当时被认为是改写深度学习领域的一项技术。

但在2014年,这个概念还远未被提出。

林枫意识到自己可能正站在改变这一切的关键时刻。

“激活函数的优化确实重要,”林枫淡淡说道,“但我说的改进,更多是指在网络层次的设计上。你有没有想过,深层网络的问题不只是梯度传递不下去,而是信息本身也无法有效传播?信号在一层层中传递时,逐渐丢失了原本的重要信息,等到最后几层时,网络几乎是在‘盲目学习’。”

“这个道理我懂,”马库斯点了点头,“但我们已经尝试了很多调整,比如增加跳层连接、在特定层使用更强的正则化,甚至尝试了不同的初始化方法,效果依旧有限。”

林枫暗自一笑,跳层连接?

看样子马库斯已经有了些残差网络的雏形思想,但还没触及真正的核心。

“你们是朝着正确的方向走的,”林枫说道,眼神中透着些许不易察觉的自信,“但或许你们忽略了一个更关键的概念。网络越深,信息传递的阻碍就越大,而如果我们在每几层之间构建直接的‘捷径’,让信息不必层层传递,而是能够跨越几层直接回到前面的层,这样就能有效解决梯度消失的问题。”

“直接跨层?这……”马库斯有些困惑,“你的意思是跳过中间的层,让前面的输出直接输入到后面的层?这样网络的非线性特征不就被打破了吗?”

“No,no,no”林枫轻轻摇头,“这种跨层连接并不是要完全替代中间层,而是让信息能够‘绕过’那些不必要的损失点,从而减少梯度消失的机会。中间的层依然存在,依然发挥作用,但跳过的这些连接能够保证信息传递的稳定性。你可以把它想象成是给网络‘加了一层保险’,避免重要信息在传递中被淹没。”

马库斯听得眼前一亮,这个思路与他们之前讨论的跳层连接确实有些相似,但林枫描述的更为彻底。“跨层连接”和“跳层连接”不再只是简单的尝试,而是建立起一种全新的信息传递方式。

这种方式听起来既能保留深度网络的复杂性,又能有效应对梯度消失的问题。

“你说的这些……感觉像是网络中有个反馈机制,确保梯度和信息都能回流,维持学习的稳定性。”马库斯眼中闪过一丝兴奋,他直觉林枫正在讲述的东西,可能会是未来突破深层神经网络训练的关键。

林枫笑了笑,点了点头。

正是“反馈机制”的概念让残差网络得以解决深度神经网络中的许多瓶颈。

林枫继续说道:“这套结构让信号能够通过短路或捷径返回到较浅的层,减少信息丢失,同时保持梯度的大小,确保网络不会在深度增加时失去学习能力。其实你们可以试着在更复杂的网络中引入这种结构,我相信会看到意想不到的效果。”

马库斯默默点头,仿佛意识到了一条前所未有的道路。

“不过你说的这些,”马库斯沉吟片刻,“听起来非常前卫。我们现在的技术,尤其是硬件算力的限制,可能还不足以支撑如此复杂的网络结构和跳跃式的连接方式。”

“的确,”林枫对此并不感到意外,“当前的硬件环境还有限制,特别是GpU算力不足,限制了深度学习网络的规模。不过这些并不是问题,软件技术的发展会推动硬件的进步。

随着并行计算技术的进步,未来会有专门为AI设计的硬件,比如tpU(张量处理单元),它们可以显着提升训练效率。”

为了避免泄露过多,林枫只提到了张量处理器。

其实未来的变化远不仅于此。

在未来,还会有更多高效的优化算法,像Adam优化器会成为主流……

尽管林枫只是透露一点半点,以对未来猜测的形式说出来。

但这已经足够让马库斯无比震惊了。

“tpU?”马库斯皱眉,他从没听说过这个名词,“这是新的硬件架构?”

林枫轻描淡写地补充道:“只是一种假设性的计算架构,未来可能会出现,专门针对深度学习任务,你不觉得针对人工智能深度学习有开发一种专门硬件的必要吗?”

马库斯若有所思地点头,脑海中突然涌现出无数思考的路径。

不得不承认,林说得确实有道理,而且从种种迹象来看,像是Google确实是在致力于开发一种专门用于人工智能的硬件,至于是不是叫做张量处理器,马库斯就无从得知了。

不过马库斯已经是受益匪浅了,虽然林枫描述的这种依托跳跃式连接对于普通的电脑来说肯定是做不到的,硬件跟不上。

但对于实验室环境下实现硬件支持还真不是什么难事,一些美国高校能调动的资源超乎你想象。

马库斯决定回去就实验一番。

林枫看着马库斯那若有所思的郑重神情,心里忍不住暗笑。

他清楚自己随口透露的这点信息,足以让这个时代的研究人员在未来几年迎来爆发式的进步。

不过,对于林枫来说,这不过是习以为常的知识而已。

但马库斯却无比正式地说道:“林!你知道吗?你正在改变世界!”

磨铁读书推荐阅读:四合院:坏好的许大茂绝世剑神终极天门狂战士的异界旅程为了成为英灵我只好在历史里搞事我有一个异世界大国重器:机师成神之路!鸡飞狗跳的农门生活农女:星际战将在古代开顺风快递带着萌宝去结婚死亡十万次,我直接买通时空长河华娱:开局加上天仙好友爱妃百媚一笑,反派君王不经撩四合院:相亲被嫌弃,捡个小萝莉我一鲜肉,参加恋综全是阴间技能蚀心醉爱,薄情总裁画地为牢清穿之四爷的出逃福晋九龙神鼎官路:第一秘书潜修数载,归来震世间天宇传记六界封神狼与兄弟暗影熊提伯斯的位面之旅未卜先知小郡主,四个哥哥争着宠神豪:我真不是许愿池里的王八塞外江南直播:开局喂狗,你来道德绑架?我成了少年何雨柱天陨闻道录夺心契约,腹黑总裁很靠谱雨雪未期:连少,等我长大天兵在1917妻子深藏功与名,孩子非亲生情满四合院之彪悍人生重生:官运亨通官场之绝对权力权国规则怪谈:冲了鬼新娘,我不当人了被女人宠的神医华三杰殿主老公重生平行世界,我是全球第一神豪获得系统,却被美女反手搞进局子夫人她又去虐渣了赌石奇才我在农村屠过神我能看透你的未来,不过分吧!天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿
磨铁读书搜藏榜:我有一个异世界天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿大国重器:机师成神之路!开局我怒休渣男王牌相公:霸道妻主爱上我身为仙帝的我开局穿越了万亿透视豪医鸡飞狗跳的农门生活重生之着魔.操盘手札记无限影视,从流金开始岁月如此多娇相思西游之大圣追爱记觉醒钞能力都市医仙魂穿大汉之未央宫赋都市游侠之青铜短剑农女:星际战将在古代开顺风快递残疾大佬不孕不育?她一胎生四宝!带着萌宝去结婚于枫于山高雨霜噩梦复苏,我有一只小僵尸三国召唤之袁氏帝途民政局门口签到,奖励美女老婆特级厨师四合院:这个司机太过嚣张赘婿无双官道红颜四合院:从下乡归来后开始离婚后我成了薄爷的白月光闪婚甜蜜蜜:总裁老公宠爆了黑心娇妻,太放肆!我是真有宝藏农家努力生活乡村野汉:与表姐一起钻进山林白手起家杀嫡重生,反派演员被爆捐款无数一窝三宝,总裁喜当爹天才高手的妖孽人生快穿之跪求愿望成真四合院:八极传人过目不忘玄门大佬她直播后,全国沸腾了田园弃妇盛世道途重生后生活真有意思全能王妃:她靠玄学飒爆京城美眷娇妻:呆萌老公好幸福甜妻动人,霸道总裁好情深
磨铁读书最新小说:穿越七十年代倒江湖一天一异火,十天屠神,百天无敌兵王闯职场,艳遇不断兵王开饭店,娇俏闻味来我有无限技能属性点,恶魔只能跪最弱御兽?反手进化神话品质神豪:还有一万亿,让我先花完高武:道德绑架?给你两拳!写小说能提现?我上传了黑客小说林峰的复仇与觉醒明星塌房?我都废墟了还塌?六零:单身汉梦缘知青女北风之恋让你打暑假工,你把地窟平推了?给你九个亿当神仙杨戬我不干从百事乐队走出来的唢呐神医狼陵王我的女友是宋雨琦初夏渲染秋凄凉文娱:从打造爆火女团开始封神全民转职:召唤丧尸穿越60年代的保定城觉醒钓鱼佬系统,成为万亿神豪东北往事,我叫林卫东胃癌晚期的我靠系统成为医学奇迹全民抽奖我全金,说我召唤师弱?融合了手机,我给自己充电修仙穿越六零改变家族命运魔法天才哥哥和他的工具人弟弟重生摆路边摊,城管催我快上班!她劈腿后,我植入了AI都市璀璨:邂逅星光高校难就业,影响我技校造航母?都市逐梦之旅途梦落少年时我是仙帝?我怎么不知道!武之信条恋曲悠扬离婚后前妻闺蜜疯狂追求我官场之顺势而为技能添词条,双职业奶妈井井有条她是未来最强,我是她的最强狼王风流神医:刚退伍,你就骗我同居修仙之都市无敌我刚觉醒系统,她爸让我滚远点?不朽正道冷清少女:我的青春永不完结校花从无绯闻,直到我们互换身体重生后走上财阀之路重生:成为猫猫后,被盯上了