磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
磨铁读书 >  离语 >   第336章 好

2.3 检索增强生成技术

RAG(Retrieval-Augmented Generation)技术是一种结合了信息检索(Retrieval)和文本生

成(Generation)的自然语言处理(NLp)方法。核心思想是将传统的检索技术与现代的自然语言

生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来

辅助大型语言模型(如 Gpt 系列)生成更准确、可靠的回答。

在 RAG 技术中,整个过程主要分为三个步骤如图 2.2 所示:索引( Indexing)、检索

(Retrieval)和生成(Generation)。首先,索引步骤是将大量的文档或数据集合进行预处理,将

其分割成较小的块(chunk)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结

构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它

根据输入的查询或问题,从向量数据库中检索出与查询最相关的前 k 个 chunk。这一步依赖于高效

的语义相似度计算方法,以确保检索到的 chunk 与查询具有高度的相关性。最后是生成步骤,它将

原始查询和检索到的 chunk 一起输入到预训练的 transformer 模型(如 Gpt 或 bERt)中,生成最

终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯

且相关的文本。

RAG 的概念和初步实现是由 douwe Kiela、patrick Lewis 和 Ethan perez 等人在 2020 年首次

提出的。他们在论文《Retrieval-augmented generation for knowledge-intensive nlp tasks》

中详细介绍了 RAG 的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将 RAG 技术应用到搜

索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG 技术可以帮助医生快速检

索医学知识,生成准确的诊断建议和治疗方案。

2.4 文本相似度计算

文本相似度计算是自然语言处理(NLp)领域的一个重要研究方向,它旨在衡量两个或多个文

本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本

之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越

小,它们之间的相似度就越高。

文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要

关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方

法有余弦相似度、Jaccard 相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义

和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法

(如 word2Vec、GloVe 等)和基于主题模型的方法(如 LdA、pLSA 等)。最后是基于机器学习的方

法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于

机器学习的方法有支持向量机(SVm)、神经网络等。

目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究

者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实

现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中

文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显着的效果。放眼国外,

Google 的研究者提出了 word2Vec 算法,该算法将词语表示为高维向量空间中的点,通过计算点之

间的距离来衡量词语之间的相似度。word2Vec 算法在文本相似度计算领域具有广泛的影响。斯坦

福大学等机构的研究者提出了 bERt 模型,该模型通过大量的无监督学习来捕捉文本的上下文信

息,可以实现高精度的文本相似度计算。bERt 模型在多项自然语言处理任务中均取得了优异的表

现。

2.5 本章小结

本章主要介绍了本项目中使用的四种关键技术与模型。这些技术主要基于大型语言模型,并且

依赖于 RAG 技术的原理。介绍了知识抽取技术,它利用先进的自然语言处理技术从文本中提取有意

义的信息和知识,随后讨论了文本处理中所使用的 RAG 技术,该技术可以显着提高大型语言模型在

专业领域的性能,增强信息检索的准确性和效率。最后探讨了在文本比对过程中所需的相似度计算

方法,这对于评估文本之间的相似程度至关重要。

了解清楚数据获取来源后,进行数据采集,数据采集的方法包括自动化和手动两种方式:

自动化采集:利用编写的 python 脚本通过 ApI 接口自动从上述数据库和期刊中下载文献和元

数据,部分代码如图 3.2 所示。这种方法的优点是效率高,可以大量快速地收集数据。使用

beautifulSoup 和 Requests 库从开放获取的期刊网站爬取数据。

手动采集:通过访问图书馆、研究机构以及联系文章作者等方式获取不易自动下载的资源。虽

然此方法更费时,但有助于获取更全面的数据集,特别是一些最新或尚未公开的研究成果。

将两种方法采集到的文献数据进行汇总,最大范围的将有关电力 LcA 领域的英文文献进行汇

总,共获得 507 篇。

最后是将各个途径获取到的文献数据和元数据汇总,进行数据预处理。

采集到的数据需经过清洗和预处理,才能用于后续的分析。

数据预处理的步骤包括:

数据清洗:删除重复的记录,校正错误的数据格式,填补缺失值。

数据整合:将来自不同来源的数据整合到一个统一的格式和数据库中,如表 3.1 所示,以便进

行进一步的分析。

为了使后续知识库生成更加准确与完善,对文献具体内容进行筛选。例如部分文献中并未提到

所用数据,而是指出所用数据库链接,如图 3.3 所示,在对该篇文献进行解析后,数据部分就是欠

缺的,最终构建的知识库就不完整,在调用大模型回答相关问题时,极大概率产生幻觉。因此为了

构建更为准确的专业模型,对爬取下来的 507 篇文献进行筛选,选择包括流程图(system

boundaries)、各单元过程或生产环节的投入( input),产出( output),数据( life cycle

inventory),以及数据的时间、地点、获取方法、技术细节的文献作为最后应用的数据。核对内容

后的文献数据集共 98 篇英文文献。

磨铁读书推荐阅读:快穿路人也有春天读心残废师妹后,全宗门鸡犬升天被迫成为偏执领主的娇弱伴侣守寡后,我被病娇权臣诱婚了摄政王的侍郎大人萌宝驾到:总裁爹地宠翻天爹爹开门,我带剧本来救全家了小夜曲穿越沈眉庄,摆脱甄嬛后成为赢家四合院:入编情报处,家父镇国级重来一次,不再说不火影直播:开局剧场版鸣人之死离语斩神,拿你们当兄弟,居然都想泡我,在世界的尽头等你劫于你眉睫疯批腹黑王爷遇上俏村姑科学穿越四胞胎来了重生后我养了五个权臣重生九零踹渣男嫁混混头子生崽崽从火影开始的罐子商人!逆天改命之商界女霸总综影视之末世神棍和她的忠犬男友小小寻仙路甜丧美人和阎王在人间杀疯了民间风水传奇开局被卖:别慌,老娘有空间让你参加规则怪谈咋都是熟诡异奥特搞事日常直播找个邪神做男友不过分吧捡破烂的师姐竟是炼器大佬轮回手札毒媚嫡公子快穿:被攻略了,新男主他很会撩宝可梦:从小火龙开始打穿联盟快穿,一心只想完任务穿越到小马宝莉的人类反派农门医女一睁眼,前世仇人颤抖了化凡为仙快穿:疯批宿主在小世界拨乱反正穿书之空间在手,天下我有重生六零:小知青带着空间爽爆了华娱:一首泡沫技惊四座HP:霍格沃茨之蛇女配修仙苟上天饥荒年通古今,开个超市喂将军从诡异大陆开始诱入婚渊鬼吹风
磨铁读书搜藏榜:重生军婚之宠爱三千:开局仨崽新科状元郎家的小福妻她有冥帝撑腰,没事不要找她作妖小透明的影后之旅穿越了,成为了全家的宠儿从迪迦开始的无限之旅寻金夜行者魔修仙界空洞骑士:圣巢戮途捕风捉凶让你演恶毒女配不是窝囊废界灵幻世嫁良缘快穿结束,回到原世界只想摆烂!绝世凶徒海贼:全新旅程嫁狐猎户家的夫郎从天降快穿:疯批宿主他装得楚楚可怜她是,怦然惊欢诡途觅仙美强惨的首富老公是恋爱脑弃女归来她惊艳了世界jojo:DIO兄妹的不妙冒险云龙十三子之七剑与双龙君渡浮虚变身从古代开始灵气复苏萌妻不乖:大叔撩上瘾翘然有你精灵宝可梦之黑暗世界的小智漂亮宝妈靠十八般武艺教全网做人纨绔公主她躺赢了百日成仙嘿哈,快穿一霸横扫天下上什么班?回家种田!铠甲:我左手黑暗帝皇,右手修罗霸住不放,金丝雀每天都在拒绝我是警察,别再给我阴间技能了人在宝可梦,开局碰瓷霸主级耿鬼名门贵医宝可梦:开局一只上将巨钳蟹!我和离当晚,九皇叔激动得一夜未眠秦大小姐的爱哭包我一真千金,会亿点点玄学过分吗不死拳皇斗罗:自爆穿越,千仞雪爱上我末世重生之丧尸攻略小师妹生来反骨,女主掉坑她埋土霍格沃茨:格林德沃家的叛逆小獾
磨铁读书最新小说:剧组小透明但前任是顶流追他八年,和他死对头HE了村娃修仙传海边小镇的深情与薄情浮世愿问九卿尼美往南的新书怪谈!我被雏田抓走练回天!蓝色T恤衫开局满级横练,我横推江湖大唐医女:穿越后我开挂了人间颜色斗罗:炎帝徒弟勇闯斗罗大陆碟战,我能分辨日碟叹卿如烟跑路被抓,禁欲皇帝他超爱重生逆转乾坤她只是撩一撩,谁想他真上钩我作为恋爱脑有点战斗力怎么了?京雪未央我可不会宠物疗养林婉兮之穿越现代原神:旅途何日到终焉爱在东南枝灵异界大佬:全家跪求我带飞我的白月光是团宠云中月之残月孤灯圣诞诡异录快穿之成为任务者校草,我惹不起你,躲得起海豚女神:太阳神阿波罗爱上我快穿:好孕小妖精被绝嗣大佬娇宠假千金重生断亲后,成飞升第一人戏仙记快穿:所有人都疯了颤抖吧,渣爹山坳里的姐妹花光影对决:双生世界的重生小梦三千,大梦未醒重生木兰辞六零不下乡,系统暴击出工作在恐怖游戏里和boss谈恋爱朝歌辞穿书后我靠捡宝拯救全宗门华夏兵王的合租室友穿越!我激活了无敌异能美男要撩我,我有空间通通收下京圈大佬的白月光小撩精揽玫瑰病弱女配是乙游白月光