磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
磨铁读书 >  离语 >   第295章 吃饱了

1.3.2 研究方法

本文以有关电力行业 LcA 的近十年的英文文献为研究对象,并根据每篇文章的元数据构建数据

库。进行文档分割,将文件分割为更小的部分或章节,分区后使其更容易分类和提取文本,将文档

元素列表存储并跟踪从文档中提取的各种元数据,将文本元素分割为适合模型注意力窗口的大小,

构建向量数据库,方便大模型调用。利用 RAG(检索增强生成)模型,帮助大语言模型知晓具有电

力 LcA 领域专业性和时效性的知识,包括最新的新闻、公式、数据等内容,增强大模型回答关于电

力行业 LcA 领域专业性问题与时效性问题的能力,主要用到的研究方法如下。

(1)文献资料法。通过阅读大量国内外研究检索增强生成的文章,确定将 RAG 技术作为提升

大语言模型回答电力行业 LcA 领域问题专业性与时效性问题的解决方法。文献调研显示,聚焦于此

领域的大模型是一个研究空白,将电力行业 LcA 的大模型应用于企业层面的分析,能够响应了重大

战略。该方法能够提升科研眼界、开阔研究思路、丰富研究角度。

(2)实验法。本文使用爬虫程序抓取各顶级期刊官网上近十年的文章,并通过元数据处理方

法,构建文章元数据的数据库。

(3)实证分析法。本文通过大量实际数据,来验证大模型调用电力行业 LcA 领域向量数据库

回答该领域专业性问题和时效性问题的有效性。

1.3.3 系统设计

系统设计三个模块,整体设计如图 1.4 所示,分别是数据处理模块、专业领域知识库构建模块

以及 chatbot 构建模块。数据处理模块主要包括对电力 LcA 这个特定领域的英文文献进行选择和初

步处理,而后将有关数据全部转化成结构化数据。知识库构建模块主要是将数据向量化并构建向量

知识库。chatbot 构建分为功能部分和前端部分,功能包括 openAI 基座的调用、知识库检索、在

线检索;前端部分为 web 可视化以及 UI 设计。

1.4 本章小结

第一章作为本论文的引言部分,主要围绕研究背景、研究目的与意义、研究内容与方法以及系

统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出

了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明

确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背

景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。

2.1 大语言模型

chatGpt 是由 openAI 发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文

字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有

优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领

域。chatGpt 在 Gpt3.5 的基础上引入了 RLhF(reinforcement learning from human feedback)

技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的

意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 chatGpt 的对

话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在

多模态领域,Visual chatGpt、mm-ReAct 和 huggingGpt 让视觉模型与 chatGpt 协同工作来完成视

觉和语音任务。

除此以外,许多类 chatGpt 的大模型也同样在自然语言处理方面展示出来了较好的效果。

LLamA 是应该从 7billion 到 65billion 参数的语言模型,不需要求助于专有的数据集。清华大学

提出了一种基于自回归填充的通用语言模型 GLm 在整体基于 transformer 的基础上作出改动,在一

些任务的表现上优于 Gpt3-175b。

大语言模型,例如 Gpt 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显着的

成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显

着提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻

觉等问题。RAG 与 LLm 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型

能够更好地利用外部知识和背景信息。

自 2020 年起,全球大语言模型在自然语言处理、计算机视觉、语音识别、推荐系统等领域表

现出卓越技术优势,市场规模持续增长,预计到 2028 年将达到 1095 亿美元。国外大模型产品研发

在 2021 年进入高速发展期,谷歌、openAI、英伟达、微软等公司都推出了自主研发的大模型,截

至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百

度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我

国已发布 130 个大模型。

2.2 知识抽取

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理

(NLp)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(cwS)、语义部分标签(poS)等外部

信息,因此构建中文命名实体识别(cNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(mL)的方法以及基于深度学习(dL)的方法。

今天为什么讲座要那么长时间。

磨铁读书推荐阅读:读心残废师妹后,全宗门鸡犬升天被迫成为偏执领主的娇弱伴侣守寡后,我被病娇权臣诱婚了摄政王的侍郎大人离语我,在世界的尽头等你我用废气来修仙轮回再世道医天尊上娃综后,死对头非要给娃当爹大明好孕:皇后娘娘她日日求被废人在奥特,开启奇迹之旅第一女官:气运养我,我养国运萌系小甜豆身披马甲远古兽世:她怕极了夜晚的野兽诡异降临:我能看见诡异杀人规则假面:amazon的帝皇之路!夏武往事陆教授的温柔宠溺回眸已是人生死后才知,我爱傅爷入骨授卿于渔能活着,真好!先生,夫人又上热搜了无敌拾荒人灵魂神异实录第五人格:欧一点怎么了?糙汉捡个小娇娇小妾喜欢?侯门主母让给你获得盘古传承后,我参加规则怪谈我刷的短视频被直播后爆红古代流放,小丫鬟养活了侯府满门寻锋传重生七零修仙大佬带老婆打怪影视诸天之最强舅舅四合院:老婆景甜,秦淮如酸了古穿今娱乐圈,我为国家清人渣从虐杀原形开始丹师修仙,书生丈夫又菜又爱撩换装后人前显圣,挥手间带飞古人画骨缘起终圆满常暗之主和我夜鸦有什么关系?综影视:她总拿女主祭天我孙连城心怀宇宙,钟小艾慕了探案,我与案犯巅峰对决!穿越1938综影视之末世神棍和她的忠犬男友霍格沃茨:开局钻心剜骨爱情公寓:我的幸福生活快穿了解一下只在女尊世界做任务
磨铁读书搜藏榜:重生军婚之宠爱三千:开局仨崽新科状元郎家的小福妻她有冥帝撑腰,没事不要找她作妖小透明的影后之旅穿越了,成为了全家的宠儿从迪迦开始的无限之旅寻金夜行者魔修仙界空洞骑士:圣巢戮途捕风捉凶让你演恶毒女配不是窝囊废界灵幻世嫁良缘快穿结束,回到原世界只想摆烂!湮火者,将赐予你终结!绝世凶徒海贼:全新旅程嫁狐猎户家的夫郎从天降快穿:疯批宿主他装得楚楚可怜她是,怦然惊欢诡途觅仙美强惨的首富老公是恋爱脑弃女归来她惊艳了世界盗墓:换了号,怎么还被找上门jojo:DIO兄妹的不妙冒险云龙十三子之七剑与双龙君渡浮虚变身从古代开始灵气复苏萌妻不乖:大叔撩上瘾星穹铁道:双生同源翘然有你精灵宝可梦之黑暗世界的小智漂亮宝妈靠十八般武艺教全网做人纨绔公主她躺赢了开局重生太子丹,郭嘉带我复兴大燕百日成仙嘿哈,快穿一霸横扫天下上什么班?回家种田!铠甲:我左手黑暗帝皇,右手修罗霸住不放,金丝雀每天都在拒绝我是警察,别再给我阴间技能了人在宝可梦,开局碰瓷霸主级耿鬼名门贵医宝可梦:开局一只上将巨钳蟹!我和离当晚,九皇叔激动得一夜未眠秦大小姐的爱哭包我一真千金,会亿点点玄学过分吗不死拳皇
磨铁读书最新小说:穿越反派的我只想苟活清淇往事极乐合欢功星耀之传奇玄羽的师傅是火星人青蛇附体,黛玉复活重生历劫:从将军夫人到王后斗破:聊天群张大仙被我演哭了小画师与企业家的都市霍格沃茨的冒牌巫师帝王家的异世奇缘三生有幸只因遇见你四合院之开局让傻柱识破绝户计辉煌天龙人穿成反派她却只想过富贵生活HP首富小獾的救世主养成攻略米同学,你逃不掉的娇凤鸣港片,财阀大亨从洪兴贵利仔开始丑媳妇大战恶婆婆综影:从士兵突击开始的世界小马:我是苹果杰克的一个老弟啊不当咸鱼,带娘家盖房囤粮登巅峰开局:在火影当祖宗重生之冷面王爷的娇俏王妃亿万婚约:她的财富帝国你,对就是你,进来许愿开局一把弓,看我一箭核平村里来娇软知青,高冷兵王不装了我的二次元之旅,启程了警校毕业后,火速进部当厅长如懿传卫嬿婉重生之浴血而归不愧是大小姐恋综直接变癫综夫人别怕总裁继承了祖传恋爱脑火影,这游戏世界好像有点真略施癫计,懂爱后渣爹刀拿不稳了宠爱太多太难选诡异捞尸:开局暴打千年水鬼睡前故事无拘无束游走诸天穿书之逆转乾坤一四一四客栈接待所换嫁你逼的,我成皇后了你哭什么斩神:诸神代理人,开局定海神针权臣们的反骨白月光红楼之林家有嫡子福运小农女,重生旺满门背景板也能支楞起来名望七万零一带着冒险团玩遍万界继妹抢亲探花郎,却不知我也重生了