磨铁读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

随后,江寒操作着电脑,心无旁骛,很快就进入了状态。

夏雨菲也不再来打扰他,拿着手机,半躺在床上,自己上网、听歌。

江寒将高老师发送来的part012.rar和part013.rar下载下来,连同夏雨菲下载的前11个文件,放在了同一个文件夹中。

然后在第1个文件上点击鼠标右键,选择用WinRAR解压缩,很快就得到了数据包。

一共两个文件,train-images-idx3-ubyte与train-labels-idx1-ubyte。

idx3-ubyte和idx1-ubyte都是自定义的文件格式,官网上就有格式说明。

train-images文件大小超过1g,保存了20万张手写数字的图片信息。

而train-labels中则存储了20万个标签数据,与train-images一一对应。

和公开版本的MNIST不同,用于比赛的这个手写数字数据集,数据量要大出好几倍。

Kaggle官方将数据集分为两部分,训练集train向参赛选手公开,而测试集test则内部保存。

比赛的形式很简单,大家根据公开的训练集,编写自己的程序,提交给主办方。

主办方用不公开的测试集数据,对这些程序逐一进行测试,然后比较它们在测试集上的表现。

主要指标是识别率,次要指标是识别速度等。

这是“人工神经网络”在这类竞技场上的初次亮相,江寒可不想铩羽而归。

事实上,如果想追求更好的成绩,最好的办法,就是弄出卷积神经网络(CNN)来。

那玩意是图像识别算法的大杀器。

在“机器学习”这个江湖中,CNN的威力和地位,就相当于武侠世界中的倚天剑、屠龙刀。

CNN一出,谁与争锋!

只可惜,这个东西江寒现在还没研究出来。

现上轿现扎耳朵眼,也来不及了。

再说,饭要一口口吃,搞研究也得一步步来。

跨度不能太大喽,免得扯到蛋……

所以在这次比赛中,江寒最多只能祭出“带隐藏层的全连接神经网络”(FCN)。

有了这个限制,就好比戴着镣铐跳舞,给比赛平添了不少难度和变数。

那些发展了几十年的优秀算法,也不见得会输普通的FCN多少。

所以,现在妄言冠军十拿九稳,还有点为时过早。

不过,有挑战才更有趣味性嘛,稳赢的战斗打起来有什么意思呢?

江寒根据官网上找到的数据格式说明文档,编写了一个文件解析函数,用来从两个train文件中提取数据。

train-images-idx3-ubyte的格式挺简单的,从文件头部连续读取4个32位整形数据,就能得到4个参数。

用来标识文件类型的魔数m、图片数量n、每张图片的高度h和宽度w。

从偏移0016开始,保存的都是图片的像素数据。

颜色深度是8位,取值范围0~255,代表着256级灰度信息,每个像素用一个字节来保存。

然后,从文件头中可以得知,每张图片的分辨率都是28×28。

这样每张图片就需要784个字节来存储。

很容易就能计算出每张图片的起始地址,从而实现随机读取。

如果连续读取,那就更简单了,只需要每次读取784个字节,一共读取n次,就能恰好读取完整个文件。

需要注意的是,图像数据的像素值,在文件中存储类型为unsignedchar型,对应的format格式为B。

所以在Python程序中,在image_size(取值为784)这个参数的后面,还要加上B参数,这样才能读取一整张图片的全部像素。

如果忘了加B,则只能读取一个像素……

train-labels-idx1-ubyte格式更加简单。

前8个字节是两个32位整形,分别保存了魔数和图片数量,从偏移0009开始,就是unsignedbyte类型的标签数据了。

每个字节保存一张图片的标签,取值范围0~9。

江寒很快就将标签数据也解析了出来。

接下来,用Matplot的绘图功能,将读取出来的手写数字图片,绘制到屏幕上。

然后再将对应的标签数据,也打印到输出窗口,两者一比较,就能很轻松地检验解析函数是否有问题。

将解析函数调试通过后,就可以继续往下进行了。

首先要将图片的像素信息压缩一下,二值化或者归一化,以提高运算速度,节省存贮空间。

像素原本的取值范围是0~255。

二值化就是将大于阈值(通常设为中间值127)的数值看做1,否则看做0,这样图片数据就转换成了由0或者1组成的阵列。

归一化也比较简单,只需要将每个像素的取值除以最大值255,那么每个像素的取值空间,就变成了介于0和1之间的浮点数。

两种手段各有利弊,江寒决定每种都试一下,看看在实践中,哪个表现更好一些。

由于江寒使用的是全连接网络,而不是卷积神经网络,所以还要将2维的图片,转换成1维的向量。

这个步骤非常简单,将二维的图片像素信息,一行接一行按顺序存入一维数组就行。

事实上,在解析数据文件的时候,已经顺便完成了这一步,所以并不需要额外的操作。

20万张图片,就是20万行数据。

将这些数据按顺序放入一个×784的二维数组里,就得到了Feature。

Lable的处理比较简单,定义一个具有20万个元素的一维整形数组,按顺序读入即可。

江寒根据这次的任务需求,将20万条训练数据划分成了2类。

随机挑选了18万个数据,作为训练集,剩余2万个数据,则作为验证集validate。

这样一来,就可以先用训练集训练神经网络,学习算法,然后再用未学习过的验证集进行测试。

根据FCN网络在陌生数据上的表现,就能大体推断出提交给主办方后,在真正的测试集上的表现。

写完数据文件解析函数,接下来,就可以构建“带隐藏层的全连接人工神经网络”FCN了。

类似的程序,江寒当初为了写论文,编写过许多次。

可这一次有所不同。

这是真正的实战,必须将理论上的性能优势,转化为实实在在、有说服力的成绩。

因此必须认真一些。

打造一个神经网络,首先需要确定模型的拓扑结构。

输入层有多少个神经元?

输出层有多少个神经元?

设置多少个隐藏层?

每个隐藏层容纳多少个神经元?

这都是在初始设计阶段,就要确定的问题。

放在MNIST数据集上,输入层毫无疑问,应该与每张图片的大小相同。

也就是说,一共有784个输入神经元,每个神经元负责读取一个像素的取值。

输出层的神经元个数,一般应该与输出结果的分类数相同。

数字手写识别,是一个10分类任务,共有10种不同的输出,因此,输出层就应该拥有10个神经元。

当输出层的某个神经元被激活时,就代表图片被识别为其所代表的数字。

这里一般用softmax函数实现多分类。

先把来自上一层的输入,映射为0~1之间的实数,进行归一化处理,保证多分类的概率之和刚好为1。

然后用softmax分别计算10个数字的概率,选择其中最大的一个,激活对应的神经元,完成整个网络的输出。

至于隐藏层的数量,以及其中包含的神经元数目,并没有什么一定的规范,完全可以随意设置。

隐藏层越多,模型的学习能力和表现力就越强,但也更加容易产生过拟合。

所以需要权衡利弊,选取一个最优的方案。

起步阶段,暂时先设定一个隐藏层,其中包含100个神经元,然后在实践中,根据反馈效果慢慢调整……

确定了网络的拓扑结构后,接下来就可以编写代码并调试了。

调试通过,就加载数据集,进行训练,最后用训练好的网络,进行预测。

就是这么一个过程。

江寒先写了一个标准的FCN模板,让其能利用训练数据集,进行基本的训练。

理论上来说,可以将18万条数据,整体放进网络中进行训练。

但这种做法有很多缺点。

一来消耗内存太多,二来运算压力很大,训练起来速度极慢。

要想避免这些问题,就要采取一定的策略。

磨铁读书推荐阅读:我在农村说媒,拯救天下光棍都市之至尊战神全民觉醒:我隐藏了空间系谜案追凶地摊捡漏,开局万倍利润四合院:傻柱子的幸福生活陆云我的七个姐姐风华绝代免费阅读 小说娱乐:进狱顶流,我绝不踩缝纫机猛男下山,整个世界瑟瑟发抖游龙十三针高武签到赛亚人,一路爽翻爆星辰小巷人家:守护庄家?开局成孤儿阿姨别哭,我帮人帮到底好了穿成小寡妇后我乘风破浪网游:我能无限铸造神装重生渔村:从截胡村花阿香开始爱始终都像那片海重生之完美投资神豪狱医凶猛邪帝毒宠:爆萌兽妃反派的白月光替身我不当了异常生物猫耳娘战神:我真的只是个弟弟高冷男神住隔壁:错吻55次娱乐:你们不带我玩,那我就掀桌子了都市机甲异能者娇妻的修真逆缘灵气复苏之我能进化一切网游之野望第一位传奇驯兽师上医至明麻二娘的锦绣田园诸天金手指之打造快乐人生龙婿陆凡免费阅读高考落榜,狂撸百亿网贷杀向股市赵宁岳飞铠甲勇士大巨作全铠甲回归枭雄:被女友陷害后,出狱成大哥我有一座道具库凡星异化龙神太子地府年度最佳员工这可不是洛圣都四合院:大茂将我从桥底背回后概念神:我十级,他夭寿的十转了吸血姬饲养守则M级异能:观测者开局天降系统,我摸手就能治万病超级资源大亨我当宇宙意识的那些年
磨铁读书搜藏榜:我有一个异世界天家小农女又谜又飒穿成悲催农女后的发家日常上门佳婿大国重器:机师成神之路!开局我怒休渣男逃离异都王牌相公:霸道妻主爱上我身为仙帝的我开局穿越了万亿透视豪医鸡飞狗跳的农门生活重生之着魔.操盘手札记无限影视,从流金开始岁月如此多娇相思西游之大圣追爱记觉醒钞能力都市医仙魂穿大汉之未央宫赋都市游侠之青铜短剑农女:星际战将在古代开顺风快递残疾大佬不孕不育?她一胎生四宝!带着萌宝去结婚于枫于山高雨霜噩梦复苏,我有一只小僵尸三国召唤之袁氏帝途民政局门口签到,奖励美女老婆想躺平,却被娱乐圈女人们套路了特级厨师四合院:这个司机太过嚣张赘婿无双官道红颜四合院:从下乡归来后开始离婚后我成了薄爷的白月光闪婚甜蜜蜜:总裁老公宠爆了黑心娇妻,太放肆!我是真有宝藏农家努力生活乡村野汉:与表姐一起钻进山林白手起家杀嫡重生,反派演员被爆捐款无数一窝三宝,总裁喜当爹沧桑之情天才高手的妖孽人生从1977开始快穿之跪求愿望成真绝世容颜美女总裁董事长是我老婆四合院:八极传人过目不忘玄门大佬她直播后,全国沸腾了田园弃妇
磨铁读书最新小说:何处尽欢颜财神佑富马俊传奇中篇小说集世间百态队友屯积分,我屯队友反派:穿越过去不降智重生1960,从神农架打猎开始名臣后裔刚出大学,富婆小姐姐要包养我隐世龙皇冠禁止维度系统助力:林风的逆袭之旅重生缅北之我有大佬靠山躺平,从蓝星找媳妇生娃开始被嫌弃太穷,我靠黄金瞳成为富翁贫民少年的逆天改命竹匠生存边缘之异界入侵铁柱,下山快活去吧!神临之后权力巅峰:反贪第一人民国地主沉浮存款永远一千,包养我你分期付款全民领主:我能无限鉴定词条!奇门医圣开局校花妈妈给我当秘书师傅和貌美如花徒弟们美母骑士:超神学院时空蔷薇篇我以青铜成就王者都市异能:失落与重拾的力量回穿,卖掉宝藏富可敌国吃上萝莉软饭的科学家只想摆烂第四天灾:鬼子的噩梦来了上门女婿我不当了,你闹啥娱乐:我一个雇佣兵你让我当演员七零之八个扶弟魔的弟弟重生了开局德械师,从伪军到独裁元首偷听心声:前妻她口是心非未来的我?是天降的白给美少女!如此当官带着民众奔小康校园异能联盟人在都市,系统在末世!用成仙骗我送外卖?逆位迷宫拿着易经去穿越都市僵尸王之万界风卷行戈真千金一睁眼,满级马甲爆虐人渣让你当黑手套,你给人去城市化求生:我的兵种叠加所有升级路线我在华夏镇诸天